Nitric oxide donor restores lung growth factor and receptor expression in hyperoxia-exposed rat pups.

نویسندگان

  • Emmanuel Lopez
  • Olivier Boucherat
  • Marie-Laure Franco-Montoya
  • Jacques R Bourbon
  • Christophe Delacourt
  • Pierre-Henri Jarreau
چکیده

Exposure of newborn rats to hyperoxia impairs alveolarization. Nitric oxide (NO) may prevent this evolution. Angiogenesis and factors involved in this process, but also other growth factors (GFs) involved in alveolar development, are likely potential therapeutic targets for NO. We studied the effects of the NO donor, [Z]-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)aminio]diazen-1-ium-1, 2-diolate, also termed DETANONOate (D-NO), on hyperoxia-induced changes in key regulatory factors of alveolar development in neonatal rats, and its possible preventive effect on the physiologic consequences of hyperoxia. Newborn rat pups were randomized at birth to hyperoxia (> 95% O2) or room air exposure for 6 or 10 d, while receiving D-NO or its diluent. On Day 6, several GFs and their receptors were studied at pre- and/or post-translational levels. Elastin transcript determination on Day 6, and elastin deposition in tissue and morphometric analysis of the lungs on Day 10, were also performed. Hyperoxia decreased the expression of vascular endothelial growth factor (VEGF) receptor (VEGFR) 2, fibroblast growth factor (FGF)-18, and FGF receptors (FGFRs) FGFR3 and FGFR4, increased mortality, and impaired alveolarization and capillary growth. D-NO treatment of hyperoxia-exposed pups restored the expression level of FGF18 and FGFR4, induced an increase of both VEGF mRNA and protein, enhanced elastin expression, and partially restored elastin deposition in alveolar walls. Although, under the present conditions, D-NO failed to prevent the physiologic consequences of hyperoxia in terms of survival and lung alveolarization, our findings demonstrate molecular effects of NO on GFs involved in alveolar development that may have contributed to the protective effects previously reported for NO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhaled nitric oxide attenuates pulmonary inflammation and fibrin deposition and prolongs survival in neonatal hyperoxic lung injury.

Administration of inhaled nitric oxide (iNO) is a potential therapeutic strategy to prevent bronchopulmonary dysplasia (BPD) in premature newborns with respiratory distress syndrome. We evaluated this approach in a rat model, in which premature pups were exposed to room air, hyperoxia, or a combination of hyperoxia and NO (8.5 and 17 ppm). We investigated the anti-inflammatory effects of prolon...

متن کامل

Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject.

BACKGROUND AND PURPOSE Neonates that survive very preterm birth have a high prevalence of cognitive impairment in later life. A common factor detected in premature infants is their postnatal exposure to high oxygen tension relative to that in utero. Hyperoxia is known to elicit injury to premature lung and retina. Because data on the exposure of the brain to hyperoxia are limited, we studied th...

متن کامل

Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

BACKGROUND Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD), a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. METHODS Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were cont...

متن کامل

Role of brain-derived neurotrophic factor in hyperoxia-induced enhancement of contractility and impairment of relaxation in lung parenchyma.

Prolonged hyperoxic exposure contributes to neonatal lung injury, and airway hyperreactivity is characterized by enhanced contraction and impaired relaxation of airway smooth muscle. Our previous data demonstrate that hyperoxia in rat pups upregulates expression of brain-derived neurotrophic factor (BDNF) mRNA and protein, disrupts NO-cGMP signaling, and impairs cAMP production in airway smooth...

متن کامل

Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury.

RATIONALE Bronchopulmonary dysplasia (BPD), the chronic lung disease of preterm infants, and pulmonary emphysema, both significant global health problems, are characterized by an arrest in alveolar growth/loss of alveoli structures. Mechanisms that inhibit distal lung growth are poorly understood, but recent studies suggest that impaired vascular endothelial growth factor signaling and reduced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 34 6  شماره 

صفحات  -

تاریخ انتشار 2006